ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ. ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ЧАСТИЦ.

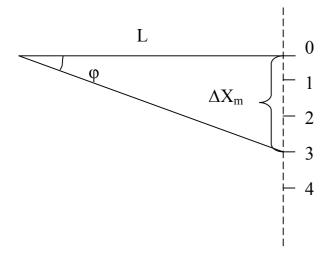
Цель работы:

- 1. Изучить принцип работы газового лазера.
- 2. Определить длину волны лазерного излучения с помощью дифракционной решетки.
- 3. Определить размеры форменных элементов крови.

Приборы: лазер газовый ЛГН-105, дифракционная решетка.

В н и м а н и е ! Беречь глаза от прямого лазерного излучения.

Лазер газовый ЛГН-105 атомарный предназначен для использования в качестве источника когерентного монохроматического излучения. Используется в медицине и биологии для лечения бронхиальной астмы, радикулитов, гипертонии, заболеваний, вызванных расстройством нервной системы, иглотерапии, анализе клеток, подсчете эритроцитов и лейкоцитов. Мощность лазера 2 мВт, диаметр пучка- 2.5мм, расходимость пучка- $3 \cdot 10^{-3}$. Монохроматический, хорошо коллимированный и пространственно когерентный световой пучок, излучаемый лазером, дает возможность непосредственно наблюдать дифракцию света в паралельнных лучах на круглых частицах.


Ход работы.

Излучатель ЛГН-105 и источник питания соединены кабелем и заземлены.

- 1. Включить вилку сетевого шнура в розетку.
- 2. Тумблер «сеть» установить в положение «ВКЛ» (по необходимости)

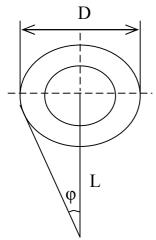
Определение длины волны лазерного излучения.

4. Перед лазером на расстоянии L от экрана установить в штативе дифракционную

решетку. На экране появится множество не перекрывающихся дифракционных спектров в виде полос красного цвета. Измерения заключаются определении В расстояния ΔX_m , между нулевым максимумом и максимумом порядка т, (т=3 или 4 по указанию преподавателя). Для этого необходимо отметить на экране (приложив чистый лист бумаги) нулевой максимум и максимум порядка т и измерить линейкой расстояние L и ΔX_m , выразив их в метрах. Результаты записать в таблицу 1. Проделать опыт еще два раза с другими значениями L.

5. Вычисления: Из формулы дифракционной решетки $dSin\phi = m\lambda$ (1), где d- период решетки (на используемой решетке указано число штрихов на миллиметр, (а не период!), для вычислений период перевести в м) и полагая, что при малых ϕ Sin $\phi \approx tg \phi$ вычислить $tg \phi$ формуле 2, а затем длину волны по формуле 3. 6. Далее произвести расчеты абсолютной $\Delta\lambda$ и относительной погрешности с

6. Далее произвести расчеты абсолютной Δλ и относительной погрешности с доверительной вероятностью 0,95. Все результаты записать в таблицу 1.


$$\lambda = \frac{(d\operatorname{Sin}\varphi)}{m} \approx \frac{(d\operatorname{tg}\varphi)}{m} \qquad (2) \qquad \operatorname{tg}\varphi = \frac{\Delta X_{m}}{L} \qquad (3) \quad E = \frac{\langle\Delta\lambda\rangle}{\langle\lambda\rangle} 100\% \quad (4)$$

								10001111200 1			
No	m	L (M)	$\Delta X_{m}(M)$	tg φ	λ(м)	<\chi>(M)	$ \Delta\lambda $ (M)	Δλ, м	Е%		
1	3										
2	3										
3	3										

Результаты записать в виде: $\lambda = \langle \lambda \rangle \pm \langle \Delta \lambda \rangle$

Определение размеров частиц.

7. Вместо дифракционной решетки в штатив поместить стеклянную пластинку с

мазком крови. Путем перемещения пластинки в фронтальной плоскости добиться появления на экране картины ИЗ нерезких чередующихся концентрических темных и светлых колец красного цвета. Так же, как и в первом опыте, произвести измерения L – расстояния от экрана до стеклянной пластины (L взять в пределах от 5 до 15 см) и D диаметров колец. При этом первым кольцом считается темное, вторым - светлое, темное и т.д. (диаметры колец отметить на чистом листе бумаги, приложенном к экрану).

<u>Установить тумблер «СЕТЬ» в положение «ВЫКЛ»</u> (вниз) и вынуть вилку сетевого шнура из розетки.

Вычисления занести в таблицу 2.

- б) вычислить $tg\varphi = \frac{D}{2L}$ для полученных колец и записать в таблицу 2.
- в) вычислить радиус частицы: согласно условию максимума

$$r \sin \varphi = \kappa \lambda;$$
 $\sin \varphi \approx tg \varphi \Rightarrow r = \frac{k\lambda}{tg\varphi},$

где r – радиус частиц,

k-коэффициент пропорциональности (k_1 =0,61, k_2 =0.82, k_3 = 1.11, k_4 = 1.34) λ -длина волны лазерного излучения (берется из первого опыта $<\lambda>$). Данные заносят в таблицу 2.

Таблица 2

кольца	D(M)	L(M)	tgφ	r (m)	< r>(M)	$ \Delta r (M)$	Δr ,(M)	Е%
1.								
2.								
3.								

Результат записать в виде $r=< r>\pm \Delta r$

Контрольные вопросы:

- 1. Электромагнитные волны. Длина электромагнитных волн видимого света Когерентные источники света. Условия максимума и минимума при интерференции.
- 2. Основные свойства лазерного излучения. Применение лазеров в медицине.
- 3. Условие максимума интенсивности при дифракции света на решетке (вывод).

ЛИТЕРАТУРА: Ремизов А.Н. Медицинская и биологическая физика: Учеб. для вузов

Эссаулова И.А., Блохина М.Е., Руководство к лаб. работам по мед. и биол. физике

Методические указания к работе